Flash vacuum pyrolysis of stabilised phosphorus ylides. Part 11. ${ }^{1}$ Unexpected generation and rearrangement of acetyl benzotriazolyl carbene

R. Alan Aitken,* Ian M. Fairhurst, Adrian Ford, Paul E. Y. Milne, Duncan W. Russell and Martin Whittaker

School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, UK KY16 9ST

Seventeen novel α-benzotriazolyl- β-oxo phosphorus ylides 2 have been prepared and characterised. Flash vacuum pyrolysis (FVP) of these generally leads to loss of both $\mathrm{R}_{3}{ }_{3} \mathrm{PO}$ and N_{2} to give intractable products but, in one case, 21 , extrusion of $\mathrm{Bu}_{3} \mathrm{P}$ is observed to give 3 -acetyl-1,2,4-benzotriazine 6 and 2^{\prime}-cyanoacetophenone 7, products apparently derived from rearrangement of the initially formed carbene 11, and involving in the latter case a novel 1,3-acetyl migration process.

In previous parts of this series we have described the thermal extrusion of $\mathrm{Ph}_{3} \mathrm{PO}$ from a variety of types of β-oxo phosphorus ylides $\mathbf{1}$ using flash vacuum pyrolysis (FVP) as a useful route to alkynes. The benzotriazolyl group has recently emerged as a versatile auxiliary group for a wide variety of synthetic transformations, ${ }^{2}$ but one group of compounds which has not been studied in this context is the N-alkynylbenzotriazoles 3 .

We were interested to examine FVP of appropriately substituted β-oxo phosphorus ylides 2 as a route to these products, although, as far as we are aware, no example of the pyrolysis of 1 where R^{1} is a nitrogen-based group has been reported. We were also aware of the thermal lability of the benzotriazole moiety ${ }^{3}$ which raises interesting possibilities for the pyrolysis process. We report here the preparation of a range of benzotriazolyl ylides 2 and their pyrolytic behaviour which, in one case, results in the quite unexpected extrusion of trialkylphosphine rather than the oxide. The products can be accounted for by rearrangement of the resulting novel carbene. ${ }^{4}$

Results and discussion

A total of 17 ylides 2 were readily prepared by treating the phosphonium salts $4\left(\mathrm{R}^{1}=\mathrm{Ph}^{5}\right.$ or Bu$)$ with butyllithium followed by the appropriate acid chloride (0.5 equiv.). The reaction proceeds with transylidation to give the product and regenerate one equivalent of $4 .{ }^{6}$ The stabilised benzotriazolyl ylides 2 were unreactive solids which showed ${ }^{31} \mathrm{P}$ NMR signals in the expected ranges (see Table 1). Their structure was further confirmed by the highly informative ${ }^{13} \mathrm{C}$ NMR spectra (Table 2), showing phosphorus coupling throughout the P-phenyl or butyl groups and through the ylide and carbonyl carbons to the first carbon atom of R^{2}. The value of the one-bond coupling constant between phosphorus and the ylide carbon in these

compounds is anomalously high compared to the normal values of $100-120 \mathrm{~Hz}$ for β-oxo ylides. While satisfactory microanalytical data were obtained for some examples, this was not possible in other cases due to the ready hydrolysis of the compounds. For the ylide $\mathbf{2 0}$ the resulting benzotriazolyl ketone 5 was isolated in pure form after storage under normal laboratory conditions for a period of weeks. We conclude that these ylides are less stabilised than is generally the case for $\mathbf{1}$ and are particularly susceptible to hydrolysis since the carbanion resulting from nucleophilic attack of water at phosphorus can be stabilised by the adjacent benzotriazolyl group. Despite this problem, the compounds obtained showed no significant impurity in their ${ }^{31} \mathrm{P}$ or ${ }^{13} \mathrm{C}$ NMR spectra and consisted overwhelmingly of the desired ylides.

When the ylides 2 were subjected to FVP in a conventional flow system (contact time $\approx 10 \mathrm{~ms}$) at $450^{\circ} \mathrm{C}$ for $\mathrm{R}^{1}=\mathrm{Bu}$ or $600^{\circ} \mathrm{C}$ for $\mathrm{R}^{1}=\mathrm{Ph}$, the phosphine oxides $\mathrm{R}_{3}{ }_{3} \mathrm{PO}$ were generally formed, together with intractable products which are probably due to subsequent loss of N_{2} and polymerisation of the resulting reactive intermediates. However in one case only, compound 21, there was exclusive loss of $\mathrm{Bu}_{3} \mathrm{P}$ to give two nitrogen-

Table 1 Preparation of the benzotriazolyl ylides 2

	R^{1}	R^{2}	Yield (\%)	δ_{P}		R^{1}	R^{2}	Yield (\%)	δ_{P}
a	Ph	Ph	20	17.4	j	Bu	Ph	57	23.3
b	Ph	Bu^{t}	27	16.4	k	Bu	Bu^{t}	56	22.1
c	Ph	Me	83	16.5	1	Bu	Me	69	22.1
d	Ph	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	28	17.3	m	Bu	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	89	23.0
e	Ph	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	96	17.8	n	Bu	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	66	23.7
f	Ph	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	78	17.4	0	Bu	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	77	23.2
g	Ph	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	78	18.0	p	Bu	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	95	24.4
h	Ph	2-MeOC6 H_{4}	50	16.3	q	Bu	Et	12	22.4
i	Ph	2-MeSC66 ${ }_{6}$	25	17.0					

Table $2{ }^{13} \mathrm{C}$ NMR spectra $\left[\delta_{\mathrm{C}}\left(J_{\mathrm{P}-\mathrm{C}}\right)\right]$ of the benzotriazolyl ylides 2

	R^{2}	CO	$\mathrm{P}=C$	$\mathrm{P}-$ phenyl or P-butyl				Benzotriazole signals	R^{2} signals
				C-1	C-2	C-3	C-4		
2 a	Ph	185.3 (17)	72.4 (126)	124.3 (92)	133.4 (10)	128.8 (12)	132.4 (2)	$\begin{aligned} & 145.2 \text { (quat.), } 137.2 \text { (quat.), } \\ & 127.4,123.2,119.5,110.2 \end{aligned}$	$\begin{aligned} & 139.3(10), 129.4,127.6 \\ & (2 \mathrm{C}), 127.0(2 \mathrm{C}) \end{aligned}$
2b	Bu^{t}	196.4 (15)	70.4 (138)	125.4 (92)	133.2 (10)	128.4 (12)	131.9 (2)	145.1 (quat.), 137.9 (quat.), 127.1, 123.1, 119.6, 111.0	40.7 (8), 27.8 (3 C)
2c	Me	189.9 (17)	71.0 (135)	124.2 (92)	133.4 (10)	128.8 (12)	132.5 (2)	145.3 (quat.), 136.9 (quat.), 127.4, 123.3, 119.7, 110.1	24.2 (8)
2d	4-MeOC6 H_{4}	184.1 (17)	71.5 (137)	124.7 (92)	133.4 (10)	128.7 (12)	132.3 (2)	$\begin{aligned} & 145.3 \text { (quat.), } 137.3 \text { (quat.), } \\ & 127.4,123.2,119.6,110.4 \end{aligned}$	$\begin{aligned} & 160.6,131.7(10), 128.9 \\ & (2 \mathrm{C}), 113.0(2 \mathrm{C}), 55.0 \end{aligned}$
2e	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	184.0 (18)	72.6 (135)	124.1 (92)	133.4 (10)	128.8 (12)	132.5 (2)	$\begin{aligned} & 145.3 \text { (quat.), } 137.2 \text { (quat.), } \\ & 127.6,123.3,119.7,110.1 \end{aligned}$	$\begin{aligned} & 137.9(10), 135.2,128.5 \\ & (2 \mathrm{C}), 127.9(2 \mathrm{C}) \end{aligned}$
2 f	4-MeC66 H_{4}	185.1 (18)	71.9 (137)	124.6 (92)	133.4 (10)	128.7 (12)	132.3 (2)	$\begin{aligned} & 145.3 \text { (quat.), } 137.4 \text { (quat.), } \\ & 127.3,123.2,119.5,110.4 \end{aligned}$	$\begin{aligned} & 139.4,136.4(10), 128.3 \\ & (2 \mathrm{C}), 127.0(2 \mathrm{C}), 21.2 \end{aligned}$
2 g	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	183.4 (19)	74.0 (140)	123.5 (92)	133.4 (10)	129.0 (13)	132.9 (2)	$\begin{aligned} & 145.3 \text { (quat.), } 137.1 \text { (quat.), } \\ & 127.8,123.5,119.9,109.8 \end{aligned}$	$\begin{aligned} & 147.9,145.9(10), 127.9 \\ & (2 \mathrm{C}), 123.0(2 \mathrm{C}) \end{aligned}$
2j	Ph	185.4 (16)	70.4 (127)	20.0 (54)	24.2 (4)	23.9 (15)	13.5	$\begin{aligned} & 145.5 \text { (quat.), } 136.8 \text { (quat.), } \\ & 127.4,123.5,119.8,110.3 \end{aligned}$	$\begin{aligned} & 139.8(9), 128.9,127.6 \\ & (2 \mathrm{C}), 126.6(2 \mathrm{C}) \end{aligned}$
2k	Bu^{t}	196.8 (15)	67.6 (129)	20.1 (55)	24.3 (4)	23.8 (15)	13.4	$\begin{aligned} & 145.4 \text { (quat.), } 138.0 \text { (quat.), } \\ & 127.6,123.6,120.1,110.9 \end{aligned}$	40.7 (7), 28.0 (3 C)
21	Me	189.2 (17)	69.4 (126)	19.8 (54)	24.0 (<2)	23.9 (16)	13.5	145.5 (quat.), 136.8 (quat.), 127.8, 123.8, 120.1, 110.2	23.4 (8)
2m	4-MeOC6 H_{4}	184.3 (17)	69.4 (128)	20.1 (54)	24.2 (4)	23.9 (15)	13.5	145.5 (quat.), 136.9 (quat.), 127.5, 123.6, 119.8, 110.4	$\begin{aligned} & 160.1,132.3(9), 128.3 \\ & (2 \mathrm{C}), 112.9(2 \mathrm{C}), 55.0 \end{aligned}$
2 n	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	183.8 (17)	70.3 (126)	19.9 (54)	24.1 (4)	23.9 (15)	13.5	145.5 (quat.), 136.8 (quat.), 127.7, 123.7, 119.9, 110.1	$\begin{aligned} & 138.3 \text { (9), } 134.7,128.1 \\ & (2 \mathrm{C}), 127.8 \end{aligned}$
2p	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	182.9 (18)	71.7 (123)	19.8 (53)	24.1 (4)	23.9 (16)	13.4	$\begin{aligned} & 145.5 \text { (quat.), } 136.6 \text { (quat.), } \\ & 128.0,123.9,120.1,109.7 \end{aligned}$	$\begin{aligned} & 147.6,146.4(10), 127.5 \\ & (2 \mathrm{C}), 122.9(2 \mathrm{C}) \end{aligned}$
2q	Et	193.1 (16)	69.6 (125)	19.9 (54)	24.0 (4)	23.8 (16)	13.4	145.5 (quat.), 136.9 (quat.), $127.8,123.8,120.2,110.2$	28.4 (7), 10.1

containing products. The major product, isolated in 26% yield after preparative TLC, appeared to be either 3-acetyl-1,2,4benzotriazine 6 or the previously unknown isomeric 4-acetyl-1,2,3-benzotriazine 12. Since we had difficulty in reproducing the reported ${ }^{7}$ synthesis of $\mathbf{6}$, a new route was devised (Scheme 1). This involved the preparation of the previously unknown

10
Scheme 1 Reagents: i, $\mathrm{EtCO}_{2} \mathrm{H}$, heat; ii, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$; iii, 4 m HCl , heat; iv, aq. $\mathrm{KOH} ;$ v, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$; vi, 1,3-dibromo-5,5-dimethylhydantoin, AIBN, CCl_{4}; vii, $\mathrm{Me}_{2} \mathrm{SO}, \mathrm{NaHCO}_{3}$

3-ethyl-1,2,4-benzotriazine $\mathbf{1 0}$ from 2'-nitrophenylhydrazine $\mathbf{8}$ following the procedure reported for the 3 -methyl compound. ${ }^{8}$

Thus, $\mathbf{8}$ was converted to its hydrazide with propionic acid and reduction of the nitro group by catalytic hydrogenation gave 9 . Cyclisation of this and oxidation ${ }^{8}$ gave $\mathbf{1 0}$, which was then subjected to radical bromination with 1,3-dibromo-5,5-dimethylhydantoin and Kornblum oxidation to afford $\mathbf{6}$, identical in all respects with the pyrolysis product.

The formation of $\mathbf{6}$ is readily explained by a $1,2-\mathrm{N}$ migration in the carbene intermediate $\mathbf{1 1}$ resulting from extrusion of $\mathrm{Bu}_{3} \mathrm{P}$ (Scheme 2). This intermediate might also undergo 1,2migration of Ar to give 12. The minor pyrolysis product isolated in 16% yield appeared to result from loss of N_{2} from $\mathbf{1 2}$ i.e. to have the benzazete structure 13, and pyrolysis of $1,2,3-$ benzotriazines is known to give benzazetes. ${ }^{9}$ However all the previous examples were highly reactive and, although the acetyl group might be expected to stabilise the structure to some extent, the compound seemed too unreactive towards cycloaddition and pyrolysis (unchanged on FVP at $850^{\circ} \mathrm{C}$) for this to be a realistic possibility. The observation of a weak IR absorption at $2220 \mathrm{~cm}^{-1}$ led to the identification of the minor product as 2^{\prime}-cyanoacetophenone 7 , confirmed by comparison with the authentic material. ${ }^{10}$ It seems most likely that this product is formed, as shown in Scheme 2, by loss of N_{2} from the 1,2,3benzotriazine $\mathbf{1 2}$ to give the aryl-iminyl diradical. Rather than cyclise to give the antiaromatic benzazete 13, this appears to prefer to cyclise on to the carbonyl group to form a cyclobutane ring which then undergoes β-scission leading to 7. Although

${ }^{b}$

7

13
Scheme 2
pyrolysis of aromatic-fused 1,2,3-triazines sometimes gives the benzazetes, ${ }^{9}$ other reactions of the initial aryl-iminyl diradicals have been observed before, ${ }^{11}$ including one case of an apparent 1,3-H migration to give a nitrile. ${ }^{12}$ Ring opening of the cyclobutaniminyl radical to generate a nitrile is also well precedented. ${ }^{13}$ An alternative possibility is that the rearrangement of carbene $\mathbf{1 1}$ takes place regiospecifically to give $\mathbf{6}$ and that this then loses N_{2} to some extent to give the diradical isomeric with that derived from 12 (Scheme 2). This could then rearrange by way of 2-isocyanoacetophenone to give 7 . This was discounted however, by FVP of 6 which, even at the higher temperature of $550^{\circ} \mathrm{C}$, led to recovery of unchanged starting material with no trace of 7 .

The anomalous behaviour of $\mathbf{2 l}$ demands some explanation since, as far as we are aware, this is the first instance of thermal extrusion of phosphine rather than phosphine oxide from a β oxo phosphorus ylide. Thermal extrusion of phosphine from less well stabilised ylide types is known ${ }^{14}$ and the extrusion from β-oxo ylides can be achieved photochemically. ${ }^{15}$ It is, however, the discrepancy between the behaviour of 21 and all the other examples 2 studied which is most striking. It appeared that this might be due to the relative importance of the E - and Z-phosphonium enolate forms \mathbf{A} and \mathbf{B} in the gas phase. As shown in Scheme 3 , the structure of β-oxo phosphorus ylides can be

A

C

B

D

Scheme 3
represented by the four contributing forms $\mathbf{A}-\mathbf{D}$ with the relative importance of each depending on the substituents present. The relatively bulky benzotriazolyl group means that, particularly for $\mathrm{R}^{1}=\mathrm{Bu}$, the Z-form \mathbf{B} is sterically crowded. It is only for $\mathrm{R}^{2}=\mathrm{Me}$, however, that the alternative E-configuration \mathbf{A} offers any advantage and $\mathbf{2 l}$ may exist in this form making the loss of $\mathrm{Bu}_{3} \mathrm{PO}$ impossible. For larger R^{2} groups the Z-form \mathbf{B} may be preferred and this is likely to undergo exclusive loss of $\mathrm{Bu}_{3} \mathrm{PO}$.

Experimental

Melting points were recorded on a Reichert hot-stage microscope and are uncorrected. Infrared spectra were recorded as Nujol mulls for solids and as thin films for liquids on a PerkinElmer 1420 instrument. NMR spectra were obtained for ${ }^{1} \mathrm{H}$ at 300 MHz and for ${ }^{13} \mathrm{C}$ at 75 MHz using a Bruker AM300 instrument, and for ${ }^{31} \mathrm{P}$ at 32 MHz using a Varian CFT 20 instrument. All spectra were run on solutions in CDCl_{3} with internal $\mathrm{Me}_{4} \mathrm{Si}$ as reference for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and external 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ as reference for ${ }^{31} \mathrm{P}$. Chemical shifts are reported in ppm to high frequency of the reference and coupling constants J are in Hz. Mass spectra were obtained on an A. E. I./Kratos MS-50 spectrometer using electron impact at 70 eV unless otherwise indicated. Chemical ionisation (CI) spectra were obtained on a VG Autospec spectrometer using isobutane. Dry THF was freshly distilled from potassium benzophenone ketyl. Ether refers to diethyl ether.
(1-Benzotriazolylmethyl)triphenylphosphonium chloride $4 \mathbf{4}$ was prepared by the literature method. ${ }^{5}$

(Benzotriazol-1-ylmethyl)tri-n-butylphosphonium chloride 4b

A solution of 1-chloromethylbenzotriazole ${ }^{5}(20 \mathrm{~g}, 120 \mathrm{mmol})$ and tri- n-butylphosphine ($30 \mathrm{~g}, 149 \mathrm{mmol}$) in toluene $\left(150 \mathrm{~cm}^{3}\right)$ was heated under reflux for 18 h . The precipitate which formed on cooling was filtered off and dried to give $\mathbf{4 b}(39.9 \mathrm{~g}, 90 \%)$ as colourless crystals, mp $138-140^{\circ} \mathrm{C}$ (Found: C, 61.9; H, 9.2; N, 11.3. $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{P}$ requires $\left.\mathrm{C}, 61.7 ; \mathrm{H}, 9.0 ; \mathrm{N}, 11.4 \%\right) ; v_{\max } /$ $\mathrm{cm}^{-1} 1610,1300,1230,1170,1103,1070,978,915,850,790,775$ and $732 ; \delta_{\mathrm{H}} 8.90(1 \mathrm{H}, \mathrm{m}), 8.18(1 \mathrm{H}, \mathrm{m}), 7.85-7.45(2 \mathrm{H}, \mathrm{m})$, $7.01(2 \mathrm{H}, \mathrm{d}, J 7), 2.95-2.5(6 \mathrm{H}, \mathrm{m}), 1.70-1.30(12 \mathrm{H}, \mathrm{m})$ and $0.86(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{C}} 145.3,134.3,129.4,125.1,119.5,111.8,40.0$ (d, J43), 23.9 (3 C, d, $J 16$), 23.6 (3 C, d, $J 5$), 18.4 (3 C, d, $J 44$) and $13.3(3 \mathrm{C}) ; \delta_{\mathrm{P}}+35.1$.

Preparation of the benzotriazolyl ylides 2

A suspension of the appropriate (benzotriazolylmethyl)phosphonium salt $4(11.6 \mathrm{mmol})$ in dry THF $\left(75 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under N_{2} while butyllithium in hexane (4.65 cm^{3} of a 2.5 m solution, 11.6 mmol) was added by syringe. After 15 min a solution of the appropriate acid chloride (5.8 mmol) in dry THF ($10 \mathrm{~cm}^{3}$) was added dropwise. After stirring for 1 h , the mixture was added to water $\left(250 \mathrm{~cm}^{3}\right)$. Extraction with ether-ethyl acetate $(1: 1)\left(3 \times 100 \mathrm{~cm}^{3}\right)$, drying and evaporation gave the crude product which was recrystallised from ethyl acetate-petroleum (bp 60-80 $\left.{ }^{\circ} \mathrm{C}\right)(1: 1)$.
(α-Benzotriazol-1-yl- α-benzoylmethylene)triphenylphosphorane 2a. From 4a and benzoyl chloride as yellow crystals (20%), mp 272-274 ${ }^{\circ} \mathrm{C}$ (Found: C, 77.5; H, 4.3; N, 8.4. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OP}$ requires $\mathrm{C}, 77.2 ; \mathrm{H}, 4.9 ; \mathrm{N}, 8.4 \%$) (HRMS: Found $\mathrm{M}^{+}-\mathrm{N}_{2}$, 469.1603. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NOP}$ requires $M, 469.1596$); $v_{\text {max }} / \mathrm{cm}^{-1} 1510$, $1275,1180,1104,1052,1025,995,960,745,722$ and $693 ; \delta_{\mathrm{H}}$ 7.9-7.0 $(24 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.4 ; m / z 469\left(\mathrm{M}^{+}-\mathrm{N}_{2}\right.$, 3\%), 392 (2), 364 (8), 337 (3), 262 (100), 183 (50), 152 (10), 108 (28), 105 (45) and 77 (45).
(α-Benzotriazol-1-yl- α-trimethylacetylmethylene)triphenyl-
phosphorane 2b. From $\mathbf{4 a}$ and trimethylacetyl chloride as yellow crystals (27%), mp $221-223{ }^{\circ} \mathrm{C}$ (Found: C, 74.9 ; H, $5.7 ; \mathrm{N}, 8.8$. $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{OP}$ requires C, $75.5 ; \mathrm{H}, 5.9 ; \mathrm{N}, 8.8 \%$) (HRMS: Found $\mathrm{M}^{+}-\mathrm{N}_{2}, 449.1901 . \mathrm{C}_{30} \mathrm{H}_{28}$ NOP requires $M, 449.1909$); $v_{\max } /$
$\mathrm{cm}^{-1} 1522,1338,1280,1180,1118,1066,1008,756,724$ and $700 ; \delta_{\mathrm{H}} 7.8-7.15(19 \mathrm{H}, \mathrm{m})$ and $0.93(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}$ $+16.4 ; m / z 449\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 5 \%\right), 420$ (3), 392 (32), 364 (24), 262 (50), 183 (48), 108 (22) and 57 (100).
(α-Benzotriazol-1-yl- α-acetylmethylene)triphenylphosphorane 2c. From 4 a and acetyl chloride as yellow crystals (83%), mp $216-218^{\circ} \mathrm{C}$ (Found: C, 74.8; H, 5.0; N, 9.6. $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{OP}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 5.1 ; \mathrm{N}, 9.6 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1542,1362,1330$, $1278,1183,1108,1056,1002,752,720$ and $700 ; \delta_{\mathrm{H}} 7.95-7.15$ (19 $\mathrm{H}, \mathrm{m})$ and $1.75(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+16.5 ; \mathrm{m} / \mathrm{z} 434$ $\left(\mathrm{M}^{+}-1,1 \%\right), 407\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 6\right), 392$ (6), 364 (21), 337 (3), 262 (88), 222 (15), 185 (40), 183 (100), 152 (15) and 108 (32).

[α-Benzotriazol-1-yl- α-(4-methoxybenzoyl)methylene]tri-

 phenylphosphorane 2d. From 4a and 4-methoxybenzoyl chloride as yellow crystals $(28 \%), \mathrm{mp} 217-220^{\circ} \mathrm{C}$ (Found: C, 75.5 ; H, 4.9; $\mathrm{N}, 8.05 . \mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires C, 75.1; H, 5.0; $\mathrm{N}, 8.0 \%$); $v_{\max } / \mathrm{cm}^{-1} 1605,1350,1300,1255,1180,1110,1052,1027,850$, 758,727 and $700 ; \delta_{\mathrm{H}} 7.90-7.10(21 \mathrm{H}, \mathrm{m}), 6.53(2 \mathrm{H}$, half AB pattern, J 9) and $3.63(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.3 ; m / z 499$ $\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 2 \%\right), 364$ (4), 314 (2), 277 (8), 262 (100), 183 (45), 135 (48) and 108 (26).[α-Benzotriazol- 1 -yl- α-(4-chlorobenzoyl)methylene]triphenylphosphorane 2e. From 4a and 4-chlorobenzoyl chloride as yellow crystals (96%), mp $250-253{ }^{\circ} \mathrm{C}$ (Found: C, 71.7 ; H, 4.2; $\mathrm{N}, 7.8 . \mathrm{C}_{32} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{OP}$ requires $\left.\mathrm{C}, 72.2 ; \mathrm{H}, 4.4 ; \mathrm{N}, 7.9 \%\right) ; v_{\text {max }} \mathrm{I}$ $\mathrm{cm}^{-1} 1580,1534,1446,1347,1280,1140,1110,1060,1024$, $1002,967,862,757,723$ and $700 ; \delta_{\mathrm{H}} 7.85-7.15(21 \mathrm{H}, \mathrm{m})$ and $6.97(2 \mathrm{H}$, half AB pattern, $J 10) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+17.8 ; \mathrm{m} / \mathrm{z}$ 503 (${ }^{35} \mathrm{Cl}-\mathrm{M}^{+}-\mathrm{N}_{2}, 0.5 \%$), 392 (0.3), 364 (8), 318 (4), 277 (5), 262 (100), 183 (72), 139 (43) and 108 (35).
[α-Benzotriazol-1-yl- α-(4-methylbenzoyl)methylene]triphenylphosphorane 2f. From 4a and 4-methylbenzoyl chloride as yellow crystals (78%), mp $273-276^{\circ} \mathrm{C}$ (Found: C, 77.7 ; H, 5.1 ; N, 8.2. $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{OP}$ requires $\mathrm{C}, 77.5 ; \mathrm{H}, 5.1 ; \mathrm{N}, 8.2 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1523,1447,1347,1280,1182,1108,1060,837,755,726$ and 700 ; $\delta_{\mathrm{H}} 7.85-7.1(21 \mathrm{H}, \mathrm{m}), 6.85(2 \mathrm{H}$, half AB pattern, $J 9)$ and 2.11 ($3 \mathrm{H}, \mathrm{s}$); δ_{C} see Table 2; $\delta_{\mathrm{P}}+17.4 ; m / z 483\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 3 \%\right), 454$ (1), 364 (10), 337 (2), 298 (5), 262 (100), 183 (38), 119 (40), 108 (20) and 91 (24).
[α-Benzotriazol-1-yl- α-(4-nitrobenzoyl)methylene]triphenylphosphorane 2 g . From $\mathbf{4 a}$ and 4 -nitrobenzoyl chloride as yellow crystals (78%), mp $258-262^{\circ} \mathrm{C}$ (Found: C, 70.4; H, 4.0; N, 10.1. $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}$ requires C, $70.8 ; \mathrm{H}, 4.3 ; \mathrm{N}, 10.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1548,1520,1448,1346,1280,1140,1110,1060,882,868,758$, 733 and $702 ; \delta_{\mathrm{H}} 7.95-7.2(23 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}+18.0 ; \mathrm{m} / \mathrm{z}$ $514\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 0.5 \%\right), 364$ (8), 329 (4), 277 (20), 262 (100), 183 (62) and 108 (68).
[α-Benzotriazol-1-yl- α-(2-methoxybenzoyl)methylene]tri-
phenylphosphorane 2h. From 4a and 2-methoxybenzoyl chloride as yellow crystals (50%), $\mathrm{mp} 182-184{ }^{\circ} \mathrm{C}$ (Found: C, 74.5 ; H, 4.8; N, 7.9. $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires C, $75.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.0 \%$) (HRMS: Found $\mathrm{M}^{+}-\mathrm{N}_{2}, 499.1697 . \mathrm{C}_{33} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires M, 499.1701); $v_{\max } / \mathrm{cm}^{-1} 1528,1442,1360,1282,1247,1140,1108$, 1054, 750, 720 and $700 ; \delta_{\mathrm{H}} 7.95-7.10(19 \mathrm{H}, \mathrm{m}), 7.0-6.45(4 \mathrm{H}$, $\mathrm{m})$ and $3.66(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{P}}+16.3 ; \mathrm{m} / \mathrm{z} 499\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 1 \%\right), 468(3)$, 364 (7), 262 (100), 183 (33), 135 (38) and 108 (18).
[α-Benzotriazol-1-yl- α-(2-methylsulfanylbenzoyl)methylene]triphenylphosphorane 2i. From 4a and 2-methylsulfanylbenzoyl chloride as yellow crystals (25%), mp $214-216^{\circ} \mathrm{C}$ (Found: C, 72.4; H, 4.4; $\mathrm{N}, 7.7 . \mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{OPS}$ requires C, $72.9 ; \mathrm{H}, 4.8$; N , $7.7 \%) ; v_{\max } / \mathrm{cm}^{-1} 1534,1342,1280,1110,1058,967,752,728$ and 698; $\delta_{\mathrm{H}} 7.95-7.10(19 \mathrm{H}, \mathrm{m}), 7.0-6.55(4 \mathrm{H}, \mathrm{m})$ and $2.44(3$ $\mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{P}}+17.0 ; m / z 468\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{SMe}, 2 \%\right), 364$ (4), 330 (1), 277 (8), 262 (100), 238 (4), 183 (54), 151 (32) and 108 (38).
(α-Benzotriazol- 1 -yl- α-benzoylmethylene)tri- \boldsymbol{n}-butylphosphorane $\mathbf{2 j}$. From 4b and benzoyl chloride as a colourless oil (57%) (correct elemental analysis could not be obtained owing to ready hydrolysis to give 5); $v_{\max } / \mathrm{cm}^{-1} 1602,1588,1500,1460$, $1360,1276,1232,1160,1096,1002,970,912,810,758,724$ and 698; $\delta_{\mathrm{H}} 8.1-7.85(1 \mathrm{H}, \mathrm{m}), 7.55-6.9(8 \mathrm{H}, \mathrm{m}), 2.3-1.9(6 \mathrm{H}, \mathrm{m})$,
1.8-1.2 ($12 \mathrm{H}, \mathrm{m}$) and $0.87(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+23.3$; $m / z\left(\mathrm{M}^{+} 437\right.$ not apparent), 218 ($\left.\mathrm{Bu}_{3} \mathrm{PO}, 6 \%\right), 189$ (38), 161 (18), 147 (22), 134 (20), 120 (32), 105 (24), 92 (100) and 78 (68).
(α-Benzotriazol-1-yl- α-trimethylacetylmethylene)tri- n-butylphosphorane 2k. From 4b and trimethylacetyl chloride as colourless crystals (56%), mp $71-73^{\circ} \mathrm{C}$ (HRMS: Found $\mathrm{M}^{+}-\mathrm{N}_{2}$, 389.2857. $\mathrm{C}_{24} \mathrm{H}_{40}$ NOP requires M, 389.2848); $v_{\max } /$ $\mathrm{cm}^{-1} 1608,1415,1342,1280,1215,1170,1097,1050,1003,962$, $920,808,788,756$ and $725 ; \delta_{\mathrm{H}} 8.06(1 \mathrm{H}, \mathrm{d}, J 8), 7.52(2 \mathrm{H}, \mathrm{m})$, $7.35(1 \mathrm{H}, \mathrm{m}), 1.9-1.75(6 \mathrm{H}, \mathrm{m}), 1.55-1.4(6 \mathrm{H}, \mathrm{m}), 1.4-1.25(6$ $\mathrm{H}, \mathrm{m}), 0.85(9 \mathrm{H}, \mathrm{t}, J 7)$ and $0.83(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}$ $+22.1 ; m / z 416\left(\mathrm{M}^{+}-\mathrm{H}, 1 \%\right), 389\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 10\right), 374(5), 360$ (8), 332 (100), 304 (12), 248 (20), 201 (40), 189 (32) and 92 (75).
(α-Benzotriazol-1-yl- α-acetylmethylene)tri- \boldsymbol{n}-butylphosphorane 2I. From 4b and acetyl chloride as colourless crystals (69%), mp 77-79 ${ }^{\circ} \mathrm{C}$ (HRMS: Found M $+\mathrm{H}^{+}$, 376.2522. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{OP}$ requires $M, 376.2518) ; v_{\max } / \mathrm{cm}^{-1} 1538,1278,1236,1160,1100$, $1060,1028,1010,910,818,756$ and 735 ; $\delta_{\mathrm{H}} 8.1-8.0(1 \mathrm{H}, \mathrm{m})$, 7.6-7.35 ($3 \mathrm{H}, \mathrm{m}$), 2.0-1.85 ($6 \mathrm{H}, \mathrm{m}$), $1.58(3 \mathrm{H}, \mathrm{s}), 1.6-1.3(12$ $\mathrm{H}, \mathrm{m})$ and $0.87(9 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}+22.1 ; \mathrm{m} / \mathrm{z}(\mathrm{CI})$ $376\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 347$ (25), 203 (25) and 146 (6).
[α-Benzotriazol- 1 -yl- α-(4-methoxybenzoyl)methylene]tri- \boldsymbol{n} butylphosphorane 2m. From 4b and 4-methoxybenzoyl chloride as colourless crystals (89%), mp $132-134{ }^{\circ} \mathrm{C} v_{\max } / \mathrm{cm}^{-1} 1602$, $1588,1430,1360,1248,1180,1060,1034,970,917,848,782$, 765, 732 and $700 ; \delta_{\mathrm{H}} 8.05-7.85(1 \mathrm{H}, \mathrm{m}), 7.4-7.15(3 \mathrm{H}, \mathrm{m}), 7.10$ and $6.48(4 \mathrm{H}, \mathrm{AB}$ pattern, $J 9), 3.56(3 \mathrm{H}, \mathrm{s}), 2.25-1.8(6 \mathrm{H}, \mathrm{m})$, $1.6-1.3(12 \mathrm{H}, \mathrm{m})$ and $0.87(9 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+23.0$; $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+} 467\right.$ not apparent), 218 ($\mathrm{Bu}_{3} \mathrm{PO}, 6 \%$), 189 (35), 162 (19), 147 (20), 134 (21), 120 (34), 92 (100) and 78 (64).
[α-Benzotriazol-1-yl- α-(4-chlorobenzoyl)methylene]tri- n butylphosphorane 2n. From 4b and 4-chlorobenzoyl chloride as colourless crystals (66%), mp 152-154 ${ }^{\circ} \mathrm{C}$ (Found: C, $66.4 ; \mathrm{H}$, 7.6; N, 9.0. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{ClN}_{3} \mathrm{OP}$ requires C, 66.2; H, 7.5; N, 8.9\%); $v_{\max } / \mathrm{cm}^{-1} 1580,1278,1095,1058,1018,970,918,843,818,778$, 754 and 688 ; $\delta_{\mathrm{H}} 8.1-7.9(1 \mathrm{H}, \mathrm{m}), 7.5-7.2(3 \mathrm{H}, \mathrm{m}), 7.16$ and $6.95(4 \mathrm{H}, \mathrm{AB}$ pattern, $J 9), 2.25-1.8(6 \mathrm{H}, \mathrm{m}), 1.7-1.2(12 \mathrm{H}$, $\mathrm{m})$ and $0.87(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+23.7 ; \mathrm{m} / \mathrm{z} 472$ $\left({ }^{35} \mathrm{Cl}-\mathrm{M}^{+}+1,0.5 \%\right), 443\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 8\right), 414(15), 304(5), 248$ (8), 202 (72), 173 (48), 146 (82), 118 (54), 104 (54) and 76 (100).

[α-Benzotriazol-1-yl- α-(4-methylbenzoyl)methylene]tri- n -

 butylphosphorane 20. From 4b and 4-methylbenzoyl chloride as colourless crystals (77%) (correct elemental analysis could not be obtained owing to ready hydrolysis to give 5); $v_{\max } / \mathrm{cm}^{-1}$ 1612, 1580, 1278, 1238, 1168, 1098, 1060, 976, 913, 820, 754, 732 and $700 ; \delta_{\mathrm{H}} 8.1-7.9(1 \mathrm{H}, \mathrm{m}), 7.5-7.2(3 \mathrm{H}, \mathrm{m}), 7.05$ and $6.76(4 \mathrm{H}, \mathrm{AB}$ pattern, $J 9), 2.25-1.8(6 \mathrm{H}, \mathrm{m}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.7-$ $1.2(12 \mathrm{H}, \mathrm{m})$ and $0.88(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{P}}+23.2 ; \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+} 451\right.$ not apparent), $218\left(\mathrm{Bu}_{3} \mathrm{PO}, 3 \%\right), 189$ (33), 161 (18), 147 (24), 134 (18), 120 (38), 92 (100) and 78 (64).Recrystallisation of a sample of this ylide after prolonged storage gave the hydrolysis product 2-(benzotriazol-1-yl)-4'methylacetophenone $5\left(\mathrm{R}^{2}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ as colourless crystals, mp 134-136 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.0; H, 5.4; N, 16.5. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 71.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 16.7 \%)$; $\delta_{\mathrm{H}} 8.15-7.9(3 \mathrm{H}, \mathrm{m}), 7.5-7.3$ $(5 \mathrm{H}, \mathrm{m}), 6.10(2 \mathrm{H}, \mathrm{s})$ and $2.48(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 190.0(\mathrm{CO}), 146.0$, 145.6, 133.8, 131.6 (all quat.), 129.8 (2 C), 128.3 (2 C), 127.7, 123.9, 120.0, $109.6\left(\right.$ all CH), $53.7\left(\mathrm{CH}_{2}\right)$ and $21.8\left(\mathrm{CH}_{3}\right)$.
[α-Benzotriazol-1-yl- α-(4-nitrobenzoyl)methylene]tri- \boldsymbol{n}-butylphosphorane 2p. From 4b and 4-nitrobenzoyl chloride as orange crystals (95\%), mp 140-142 ${ }^{\circ} \mathrm{C}$ (Found: C, 65.2; H, 7.3; N, 11.6. $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}$ requires C, 64.7; H, 7.3; N, 11.6\%); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1606,1520,1356,1280,1060,1006,969,909,870,820,770$ and 732; $\delta_{\mathrm{H}} 8.1-7.9(1 \mathrm{H}, \mathrm{m}), 7.85$ and $7.32(4 \mathrm{H}, \mathrm{AB}$ pattern, $J 9)$, 7.5-7.2 $(3 \mathrm{H}, \mathrm{m}), 2.25-1.8(6 \mathrm{H}, \mathrm{m}), 1.7-1.2(12 \mathrm{H}, \mathrm{m})$ and 0.88 $(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{C}}$ see Table $2 ; \delta_{\mathrm{P}}+24.4 ; m / z 482\left(\mathrm{M}^{+}, 2 \%\right), 434(4)$, 396 (3), 304 (4), 248 (6), 202 (38), 173 (37), 146 (46), 118 (36), 104 (55), 76 (100) and 61 (58).
(α-Benzotriazol-1-yl- α-propionylmethylene)tri- \boldsymbol{n}-butylphos-
phorane 2q. From 4b and propionyl chloride as colourless crystals (12%), mp $83-85^{\circ} \mathrm{C}$ (HRMS: Found $\mathrm{M}+\mathrm{H}^{+}$, 390.2677. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OP}$ requires $M, 390.2674$); $v_{\max } / \mathrm{cm}^{-1} 1530$, 1277, 1180, 1098, 1054, 1008, 975, 920, 810, 756 and $732 ; \delta_{\mathrm{H}}$ 8.2-8.1 ($1 \mathrm{H}, \mathrm{m}$), 7.65-7.45 ($3 \mathrm{H}, \mathrm{m}$), $2.46(2 \mathrm{H}, \mathrm{q}$ of d, $J 7$, 1), 2.1-1.8 ($6 \mathrm{H}, \mathrm{m}$), 1.6-1.35 ($12 \mathrm{H}, \mathrm{m}$), 1.19 ($3 \mathrm{H}, \mathrm{t}, J 7$) and $0.88(9 \mathrm{H}, \mathrm{t}, J 6) ; \delta_{\mathrm{C}}$ see Table 2; $\delta_{\mathrm{P}}+22.4 ; \mathrm{m} / \mathrm{z}$ (EI) 361 $\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 5 \%\right), 360$ (5), 332 (12), 304 (4), 248 (4), 228 (15), 218 (5), 202 (5), 189 (35), 162 (21), 148 (24) and 92 (100); m/z (CI) $390\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 361$ (17), 219 (68), 203 (27), 190 (20) and 120 (23).

Flash vacuum pyrolysis (FVP) of the ylide 21

The apparatus used was as described previously. ${ }^{16}$ The pyrolysis was conducted at a pressure in the range $10^{-3}-10^{-2}$ Torr and was complete within 1 h . Under these conditions the contact time in the hot zone was estimated to be $\approx 10 \mathrm{~ms}$.

Pyrolysis of the ylide $21(1.27 \mathrm{~g})$ at $450^{\circ} \mathrm{C}$ gave a yellow solid. The only phosphorus compound present was shown by ${ }^{31} \mathrm{P}$ NMR to be $\mathrm{Bu}_{3} \mathrm{P}\left(\delta_{\mathrm{P}}-31\right)$. Chromatography on silica using ether followed by preparative TLC on silica using first ether and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to isolation of two compounds: 2^{\prime}-cyanoacetophenone 7 (16%); $v_{\max } / \mathrm{cm}^{-1} 2224,1693,1592,1571,1486$, $1359,1296,1070$ and $960 ; \delta_{\mathrm{H}} 8.0-7.9(1 \mathrm{H}, \mathrm{m}), 7.85-7.8(1 \mathrm{H}$, $\mathrm{m}), 7.75-7.6(2 \mathrm{H}, \mathrm{m})$ and $2.71(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 196.1$ (quat.), 139.8 (quat.), $135.3(\mathrm{CH}), 132.6(\mathrm{CH}), 132.5(\mathrm{CH}), 129.9(\mathrm{CH}), 118.1$ (quat.), 111.0 (quat.) and $27.9\left(\mathrm{CH}_{3}\right) ; m / z 145\left(\mathrm{M}^{+}, 28 \%\right), 130$ (100), 102 (50), 76 (20) and 75 (27); and 3-acetyl-1,2,4-benzotriazine 6 (26%) (HRMS: Found M^{+}, 173.0582. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 173.0589)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1716,1605,1565,1473,1398$, 1360,1138 and $1052 ; \delta_{\mathrm{H}} 8.7-8.6(1 \mathrm{H}, \mathrm{m}), 8.35-8.25(1 \mathrm{H}, \mathrm{m})$, 8.2-8.0 ($2 \mathrm{H}, \mathrm{m}$) and $3.07(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{c}} 196.5$ (quat.), 154.9 (quat.), 147.6 (quat.), 140.4 (quat.), 136.3 (CH), 132.9 (CH), $129.9(\mathrm{CH}), 129.4(\mathrm{CH})$ and $27.3\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z} 173\left(\mathrm{M}^{+}, 12 \%\right)$, 145 (35), 130 (10), 103 (100), 84 (20) and 77 (50).

Authentic preparation of 3-acetyl-1,2,4-benzotriazine 6

The preparation of 3-ethyl-1,2,4-benzotriazine 10 was based on the literature method ${ }^{8}$ for the 3 -methyl analogue.
(a) Preparation of N-(2-nitrophenyl)- N^{\prime}-propionylhydrazine. A solution of 2^{\prime}-nitrophenylhydrazine $\mathbf{8}(5.0 \mathrm{~g}, 32.7 \mathrm{mmol})$ in propionic acid ($25 \mathrm{~cm}^{3}$, excess) was heated under reflux for 5 h and evaporated. Ether $\left(10 \mathrm{~cm}^{3}\right)$ was added to the residue and the solid filtered off to give the crude title hydrazide (5.16 g , 76%) as brown crystals, mp $120-122^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 8.9(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.2-$ $8.0(1 \mathrm{H}, \mathrm{m}), 7.6-7.3(1 \mathrm{H}, \mathrm{m}), 7.0-6.7(2 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{q}, J$ 7) and $1.16(3 \mathrm{H}, \mathrm{t}, J 7)$.
(b) Preparation of N-(2-aminophenyl)- N^{\prime}-propionylhydrazine 9 and cyclisation to 3 -ethyl-1,2,4-benzotriazine 10 . A solution of the above nitro compound ($3.0 \mathrm{~g}, 14.4 \mathrm{mmol}$) in ethanol (300 cm^{3}) was hydrogenated at atmospheric pressure in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst. Absorption of hydrogen was complete after 20 min and the solution was filtered through Celite and evaporated. The crude amino compound was dissolved directly in $4 \mathrm{~m} \mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and heated at $95^{\circ} \mathrm{C}$ in a water bath for 5 min . A solution of $\mathrm{KOH}(18.0 \mathrm{~g}, 320 \mathrm{mmol})$ in water $\left(80 \mathrm{~cm}^{3}\right)$ was then added and the mixture stirred for 5 min , after which a solution of potassium ferricyanide ($16.0 \mathrm{~g}, 59 \mathrm{mmol}$) in water $\left(80 \mathrm{~cm}^{3}\right)$ was added and the mixture stirred vigorously for a further 30 min . The resulting dark mixture was extracted with toluene ($3 \times 50 \mathrm{~cm}^{3}$) which was dried and evaporated to give a dark oil. Kugelrohr distillation afforded 3 -ethyl-1,2,4-benzotriazine $\mathbf{1 0}(1.0 \mathrm{~g}, 44 \%)$ as a bright yellow oil, bp (oven temp.) 165$170^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ (HRMS: Found M^{+}, 159.0801. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3}$ requires $M, 159.0796)$; $\delta_{\mathrm{H}} 8.75-8.6(1 \mathrm{H}, \mathrm{m}), 8.2-7.85(3 \mathrm{H}, \mathrm{m})$, $3.52(2 \mathrm{H}, \mathrm{q}, J 7)$ and $1.60(3 \mathrm{H}, \mathrm{t}, J 7) ; \delta_{\mathrm{C}} 167.3,146.2,140.9$ (all quat.), 135.3, 129.8, 129.5, $128.5($ all CH$), 31.1\left(\mathrm{CH}_{2}\right)$ and 12.9 $\left(\mathrm{CH}_{3}\right) ; m / z 159\left(\mathrm{M}^{+}, 2 \%\right), 131\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 85\right), 130(100), 103$ (46), 76 (63) and 50 (68).

Conversion of 3-ethyl-1,2,4-benzotriazine 10 into 3 -acetyl$\mathbf{1 , 2 , 4}$-benzotriazine $\mathbf{6}$. A solution of $\mathbf{1 0}(0.59 \mathrm{~g}, 3.7 \mathrm{mmol}), 1,3-$ dibromo-5,5-dimethylhydantoin ($0.55 \mathrm{~g}, 1.9 \mathrm{mmol}$) and AIBN $(50 \mathrm{mg})$ in tetrachloromethane $\left(25 \mathrm{~cm}^{3}\right)$ was heated under reflux for 12 h . The dimethylhydantoin was filtered off and the filtrate evaporated to give the crude 3-(1-bromoethyl)-1,2,4-benzotriazine as a severely irritant brown oil, $\delta_{\mathrm{H}} 8.6-8.5(1 \mathrm{H}, \mathrm{m})$, 8.15-7.85 ($3 \mathrm{H}, \mathrm{m}$), $5.82(1 \mathrm{H}, \mathrm{q}, J 7)$ and $2.34(3 \mathrm{H}, \mathrm{d}, J 7) ; \delta_{\mathrm{C}}$ $164.9,146.5,140.6$ (all quat.), 135.9, 131.2, 129.5, 128.9 (all $\mathrm{CH}), 46.6(\mathrm{CH})$ and $23.4\left(\mathrm{CH}_{3}\right)$.

Without further purification, this product was added to $\mathrm{Me}_{2} \mathrm{SO}\left(25 \mathrm{~cm}^{3}\right)$ containing sodium hydrogen carbonate $(0.34 \mathrm{~g}$, 4.0 mmol) and the mixture heated at $100^{\circ} \mathrm{C}$ in a fume cupboard for 3 h . The mixture was then added to water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The ethereal extracts were washed well with water $\left(10 \times 25 \mathrm{~cm}^{3}\right)$, dried and evaporated. The residue was purified by preparative TLC on silica using ether ($R_{\mathrm{F}} 0.3$) to give 3-acetyl-1,2,4-benzotriazine $\mathbf{6}(0.48 \mathrm{~g}, 75 \%)$ as colourless crystals, mp $120-123^{\circ} \mathrm{C}$ (lit., ${ }^{7} 121.5-122.5^{\circ} \mathrm{C}$) (HRMS: Found M^{+}, 173.0593. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires M, 173.0589); $v_{\max } / \mathrm{cm}^{-1} 1705,1600,1170,1135,1122,1058,953$, 792, 770 and 722 ; $\delta_{\mathrm{H}} 8.7-8.6(1 \mathrm{H}, \mathrm{m}), 8.35-8.25(1 \mathrm{H}, \mathrm{m}), 8.2-$ $8.0(2 \mathrm{H}, \mathrm{m})$ and $3.10(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 196.7(\mathrm{CO}), 155.1,147.8,140.7$ (all quat.), 136.5, 133.0, 130.1, $129.6($ all CH$)$ and $27.6\left(\mathrm{CH}_{3}\right)$; $\mathrm{m} / \mathrm{z} 173$ ($\mathrm{M}^{+}, 4 \%$), 145 (30), 130 (3), 103 (82), 76 (48), 50 (24) and 43 (100).

FVP of 3-acetyl-1,2,4-benzotriazine 6

Pyrolysis of $6(30 \mathrm{mg})$ at $550^{\circ} \mathrm{C}$ gave a yellow solid at the furnace exit which proved to be unchanged $\mathbf{6} ; \delta_{\mathrm{H}}$ as above, with no trace of 7 present.

Authentic preparation of $\mathbf{2}^{\prime}$-cyanoacetophenone 7

This was prepared according to the literature method, ${ }^{10}$ involving reaction of 2^{\prime}-bromoacetophenone with cuprous cyanide in dry pyridine. Sublimation of the product at $140-150^{\circ} \mathrm{C} / 0.1$ mmHg gave colourless crystals (30%), mp $45-46^{\circ} \mathrm{C}$ (lit., ${ }^{10}$ $\left.48{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}} 8.1-8.0(1 \mathrm{H}, \mathrm{m}), 7.9-7.65(3 \mathrm{H}, \mathrm{m})$ and $2.71(3 \mathrm{H}$, $\mathrm{s}) ; \delta_{\mathrm{C}} 196.2(\mathrm{CO}), 139.5(\mathrm{C}-1), 135.3(\mathrm{C}-4), 132.8(\mathrm{C}-5), 132.6$ (C-3), 130.1 (C-6), $118.2(\mathrm{CN}), 110.7(\mathrm{C}-2)$ and $27.7(\mathrm{Me})$.

Acknowledgements

We thank Professor Charles Rees, Imperial College, for helpful discussions and the Royal Society for a Warren Research Fellowship (R. A. A.).

References

1 Part 10, R. A. Aitken, C. Boeters and J. J. Morrison, J. Chem. Soc., Perkin Trans. 1, 1997, 2625.
2 A. R. Katritzky, S. Rachwal and G. J. Hitchings, Tetrahedron, 1991, 47, 2683.
3 See for example: C. Wentrup and W. D. Crow, Tetrahedron, 1970, 26, 3965.

4 Preliminary communication, R. A. Aitken, I. M. Fairhurst, A. Ford, P. E. Y. Milne, D. W. Russell and M. Whittaker, J. Chem. Soc., Chem. Commun., 1993, 1517.
5 A. R. Katritzky, S. Rachwal, K. C. Caster, F. Mahni, K. W. Law and O. Rubio, J. Chem. Soc., Perkin Trans. 1, 1987, 781.

6 H. J. Bestmann and B. Arnason, Chem. Ber., 1962, 95, 1513.
7 E. Bamberger and J. Lorenzen, Ber. Dtsch. Chem. Ges., 1892, 25, 3539.

8 R. A. Abramovitch and K. Schofield, J. Chem. Soc., 1955, 2326.
9 B. M. Adger, C. W. Rees and R. C. Storr, J. Chem. Soc., Perkin Trans. 1, 1975, 45; C. W. Rees, R. C. Storr and P. J. Whittle, Tetrahedron Lett., 1976, 4647.
10 J. H. Helberger and A. von Rebay, Liebigs Ann. Chem., 1937, 531, 279.

11 T. L. Gilchrist, G. E. Gymer and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1975, 1747.

12 B. M. Adger, M. Keating, C. W. Rees and R. C. Storr, J. Chem. Soc., Perkin Trans. 1, 1975, 41.
13 J. Boivin, E. Fouquet and S. Z. Zard, J. Am. Chem. Soc., 1991, 113, 1055
14 G. Wittig and W. Böll, Chem. Ber., 1962, 95, 2526; E. Anders, T. Clark and T. Gassner, Chem. Ber., 1986, 119, 1350; R. A. Aitken and M. J. Drysdale, J. Chem. Soc., Chem. Commun., 1991, 512.
15 R. R. Da Silva, V. G. Toscano and R. G. Weiss, J. Chem. Soc., Chem. Coттии., 1973, 567

16 R. A. Aitken and J. I. Atherton, J. Chem. Soc., Perkin Trans. 1, 1994, 1281.

Paper 6/04594D
Received 2nd July 1996
Accepted 3rd June 1997

